

Daily Tutorial Sheet 2	JEE Advanced (Archive)
------------------------	------------------------

16. It is not possible to prepare HI by heating alkali metal iodide (e.g. KI) with concentrated H_2SO_4 because HI is a strong reducing agent and sulphuric acid oxidises it to I_2 . Phosphoric acid does not oxidise HI.

$$H_2SO_4 + 2HI \longrightarrow SO_2 + I_2 + 2H_2O$$

 $3KI + H_3PO_4 \longrightarrow K_3PO_4 + 3HI$

17. H_3PO_4 is tribasic and H_3PO_3 is dibasic due to presence of three and two -OH group present respectively.

- **18.** Phosphine gas is evolved.
- **19.(C)** AlCl $_3$ exists as a dimer (Al $_2$ Cl $_6$). It is a strong Lewis acid as it has an incomplete octet and has a tendency to gain electrons. AlCl $_3$ undergoes hydrolysis easily and forms an acidic solution.

$$AlCl_3 + 3H_2O \rightarrow Al(OH)_3 + 3HCl$$

Option (C) is true that $AlCl_3$ sublimes at $100^{\circ}C$ under vacuum.

AlCl₃ is a Lewis acid.

- **20.(B)** Graphite shows moderate electrical conductivity due to the presence of unpaired or free fourth valence electron on each carbon atom.
- **21.(B)** Cl_2 shows bleaching action only in presence of moisture.

$$\begin{array}{c} \operatorname{Cl}_2 + \operatorname{H}_2\operatorname{O} & \longrightarrow & \operatorname{HCl} + \underset{(\text{unstable})}{\operatorname{HClO}} \\ \\ \operatorname{HClO} & \longrightarrow & \operatorname{HCl} + \underset{(\text{nascent})}{\operatorname{[O]}} \end{array}$$

Nascent oxygen thus formed is responsible for bleaching action of Cl₂.

- **22.** Liquor ammonia possesses high vapour pressure at room temperature so before opening a bottle of liquor ammonia, it should be cooled to lower down the vapour pressure of ammonia inside the bottle, otherwise the NH₃ will dump out of the bottle.
- **23.(C)** SO₂ is soluble in water (SO₂ + H₂O \rightarrow H₂SO₃) and so it cannot be collected over water.
- **24.(A)** Nitrates of heavy metals and lithium when heated decompose to produce NO_2 . KNO_3 on heating do not give NO_2 .
- **25.** Anhydrous HCl is a non-polar compound so it is a bad conductor. In aqueous solution HCl ionises to give H^+ and Cl^- ions and then it becomes a good conductor.
- 26. The value of E_{red}° is maximum for fluorine. It is placed at the top of the electrochemical series. Thus it cannot be oxidised by any reagent. It is the strongest oxidising agent.

27.
$$(NH_4)_2SO_4 + NO + NO_2 \longrightarrow 2N_2 + 3H_2O + H_2SO_4$$

28.
$$H_2S$$
 changes to S .

$$\mathrm{SO}_2 + 2\mathrm{H}_2\mathrm{S} \longrightarrow 3\mathrm{S} + 2\mathrm{H}_2\mathrm{O}$$

29.
$$Sn + 4HNO_3 \longrightarrow H_2SnO_3 + 4NO_2 + H_2O$$
 (conc.) Metastannic acid

30.
$$Pb_3O_4 + 4HNO_3 \longrightarrow 2Pb(NO_3)_2 + 2H_2O + PbO_2$$

Solution | Workbook-6 32 p-Block Elements-II